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SUMMARY

The application of a class of continuous, one-sided, three-parameter
probability distributions is being considered. The parameters represent scale
and initial and terminal shape of the associated probability density function.
The class contains as special cases (for specific numerical values of the
shape parameters) the following well-known distributions: Gauss, Welbull,
exponential, Rayleigh, Gamma, chi-square, Maxwell, and Wien. The objective is
to present and discuss a parameter determination technique which uses cumula-
tive frequency data. The approach is based on an applicability criterion for
the considered distribution class which provides the opportunity to determine
the parameter values by means of three equations derived from the first and
second moments, and an analytical approximation of the logarithm of the cumu-
lative distribution function. Since the scale-parameter can be eliminated,
the parameter determination process requires the Iterative solution on a per-
sonal computer (PC) of only two equations. Convergence of the iteration pro-
cess provides the ultimate practical justification for the applicability of
the considered distribution class relative to given empirical data. Examples
are given to verify the efficiency of the proposed parameter determination
method.
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I. INTRODUCTION

The objective is to revitalize interest in the application of a class of
probability distributions which had been designated a generalized Gamma
distribution by various authors [1, 2, 3, 4, and 51. This class represents
three-parameter, continuous, one-sided distributions which may be defined in
terms of the cumulative distribution function (cdf)

F r((1 p)F) y((-p)S 1,FS), F = xb-1, x > 0, (W)
F(x)=

0, x < 0,

with parameters b, p, and R, r(y) and y(a,y) being the Gamma function and the
incomplete Gamma function (with lower integration limit zero), respectively.

Apparently, this class of distributions was introduced originally by
L. Amoroso [6]. Various aspects of it received attention in fairly recent
publications [7, 8]. These papers refer to the close connection of the class
(*), via the associated probability density function (pdf), with a class of
parabolic differential equations (generalized Feller equation). They also
establish a connection with the underlying dynamical diffusion process. In
this context the publication [9, Sec. 7] may be of particular interest.

The probability density function (pdf) class associated with the cdf class
(*) is given by

dF(x) b-  -P exp -F, P = xb- 1 , x > 0,
f(x) - dx 0

10, x < 0. (1)

The expression for f(x) clearly demonstrates the meaning of the parameters
b, p, and R. The parameter b > 0 represents scale, p < I represents initial
shape (for small values of x > 0) and 8 > 0 represents terminal shape (for
large values of x).

A shift parameter xo may be introduced by replacing x by x-xo , x > xo .
That will not be done here, however, since only distributions of the three-
parameter type (*), (I), are of interest. To partially lift the restrictions
on p and 8, one may replace the independent variable x by, say, y-1 , y > 0
being a new independent variable; however, this possibility will not be of
further concern here. Another remark concerns a notational change relative to
the earlier papers (7, 8, 9]. The parameter A which appeared there has been
replaced by A - I - X.
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The reason for the designation of p and 8 as initial and terminal shape
parameters, respectively, is evident. For large values of x, the exponential
function in (1) is the dominating factor and, consequently, the shape of the
pdf curve or, more precisely, its rate of decay, for large values of x is
determined by $. In any case, f(x) + 0 as x + + -. Since the exponential
function approaches unity as x + 0, the initial shape of the pdf curve is
determined by p. If 0 < p < 1, f(x) + + - as x + 0 so that, in this case, a
J-shaped distribution is being dealt with. If p = 0, f(x) + R/br(br(R-1 )); the
distribution is of the half bell-shaped type (purely exponential). Finally,
if p < 0, f(x) + 0 as x + 0. The distrib'tion is hump-shaped, the pdf having
a unique maximum at the point xm - b(-pR-1)l/B.

For particular values of the shape parameters, the class of distributions
characterized by (*) contains a number of special cases well-known in sta-
tistics and statistical physics. The major ones are: [2, 7, 10]:

Gauss (p - 0, 8 - 2),
Weibull (p l 1 - 8 < 1),
exponential (p - I - 6 - 0),
Rayleigh (p = 1 - 8 = - 1),
Gamma (p < 1, 6 - I),
chi-square (p - (2 - v)/2 < 1, 8 - 1),
Maxwell (p - - 2, 8 = 2, x - vto, b - (2kT/m)l/2to), and
Wien (p - - 3, 8 = 1, x - 2rcwo-2w, b = 2ncw- 2kT*l1 .

Apparently, application of the distribution class (*) has been severely
limited, although various attempts have been made, [1, 2, 3, 4, and II] for
the special cases of Gamma and Weibull to formalize and standardize the para-
meter estimation process. In fact, the distribution class (*), has not been
used as extensively in every day statistical practice as it should be. The
main reason for this state of affairs is most likely attributed to com-
putational intensity and possibly to convergence problems arising in the
numerical solution of the associated maximum-likelihood equations. This
report will not deal further with questions related to the maximum-likelihood
approach. This will be done elsewhere in a separate publication.

From an application point of view, to revitalize interest in the distri-
bution class (*) means to provide a practically useful, efficient, and com-
putationally economical technique for the determination of the three unknown
parameters b, p, and 8 relative to given frequency data. Practical usefulness
implies the notion of a criterion being involved whose satisfaction can be
verified in the application of the technique. The parameter determination
technique that is being proposed here does involve such a criterion. It is
based on an applicability criterion, announced already [71, which is charac-
teristic for the distribution class (*). This criterion, which will be pre-
sented in Section II, recognizes the fact that the logarithm of the cdf,
is asymptotically linear in log x as x approaches zero from above. This
typical property of the class (*), can be exploited to establish one equation
in the three unknowns b, p, and 6, which encompasses the cumulative frequency
data. Two more equations in the three unknowns are obtained from the first
and second moments which can be numerically determined from the relative fre-
quency data. Since the scale parameter b can easily be eliminated by means of
the first moment, two equations are eventually left in the unknowns p and 8.
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The equation resulting from the log cdf function is too complicated to
be used directly. Therefore, it will be replaced by a simpler approximating
function which will subsequently be used for a least squares fit of the given
log cdf points. The quality of this approximation will be discussed in
Appendixes B and C.

The solution of the two final equations for the two unknown parameters p
and A proceeds by iteration (Section V). Convergence of the iteration process
provides the ultimate practical justification for the application of the
distribution class (*), relative to given empirical data (Appendix D).

A number of examples are presented in Section VI. These are "synthetic"
examples in the sense that their parameter values are known in advance and
then reconstructed by means of the proposed parameter determination method. A
quality test is immediately available by means of comparison of the original
and the calculated parameter values. One empirical example has been included
for purposes of exposition and demonstration. No attempt will be made in this
report to do a goodness-of-fit test. This will be left to another publication
which will deal exclusively with empirical examples.

While work on this project was in progress and during its publication
phase, parallel efforts on maximum-likelihood density estimation fQr the
hyper-Gamma class have led to essential new results [14] which cover both the
three- and four-parameter cases. Although computer programming via the
maximum-likelihood approach is more complex than that required by the tech-
nique presented in this report, maximum-likelihood density estimation may be
preferable in practice. Nevertheless, the method presented here leads quickly
to approximate parameter values which may be used as initial values in
maximum-likelihood estimations.

3



II. NOTATIONS AND FORMULAS

In statistical practice, empirical, data are normally given in terms of
absolute frequencies, fa, relative to a finite number m of class intervals,
[xv-l, xv)(v - 1, ..., m). The intervals are assumed to be of equal length,
d - x. - xV_], so that xv - vd, and xo = 0.

The (piecewlse constant) absolute frequency function fa(x), xE[O, xm),
is defined as fa(x) - fa(Xv-1) for xE[xvl, xv). A relative frequency

function, fr(x), xE[O,xm) can now be defined as fr(x) - N-lfa(x), N being
the total number of observations, i.e.,

m

N -Ifa(X,).

V-1

With fr(x) one associates the (empirical) 'pdf f(x) - d-lfr(x), xE[O, xx). A
major problem in statistical analysis arises in the attempt to construct a
continuous analogue of a given (piecewise constant) empirical pdf. The main
objective of the work to be presented in this report deals with a new approach
to the solution of this problem within the class of distributions (*).

The (empirical) cdf associated with given frequency data is defined as a
continuous and piecewise linear function F(x) with functional values at x - 0
and at the interval endpoints given by

F(O) - 0,

V V
F(xv) 1 : f(x,-I)d E Y fr(xul)(v - 1, ... , m). (2)

The set of m class intervals, [xv_1, xv), x0 U 0, x - vd (v - 1, ... m)
together with the cdf values, F(x,), as defined in (2), shall be called an
empicical data set.

The (theoretical) moments of the distribution class (*) are given by the
formula

MV  xvf(x)dx - bv r((v+l-p)R-l) (v - 0, 1, 2, ... ) (3)r ( ( l-p ) S- 1), ,,

0

f(x) given by (1), Mo - 1, MI U u being the mean value, and M2 being the mean
square value.

Observe the important inequality

o< i (4)
M2
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which follows from

0 < f (x-u)2f(x)dx - M2 - U2 .

0

Replacement of f(x) in (3) by the empirical pdf yields the (empirical)
first and second moments,

m

Ml - d E fr(xv)(v - 1/2), (5)

v-I

m

M2 - d2 E fr(x,)(v(v 1) + 1/3). (6)

v-1
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III. THE APPLICABILITY CRITERION

Now return to the cdf class, F(x), given in (*). By means of the defi-
nition of the incomplete Gamma function y(a, y) in terms of the degenerate
hyper-geometric function 4(.,.;.) (12; 9.236.4] the nontrivial part of F(x)
can be represented in the form

F(x) 0p p IP ((l-p)wl, I + (l-p)g-1 ; -

- xb-1, x>O.

This allows a useful expression for the logarithm of F(x) to be obtained:

log F(x) = - log r(l +(l-p)8 - I) + (l-p)log xb- I

+ log D ((l-p)8 -1 , 1 + (l-p)8- 1; - (xb-1 )8). (7)

The independent variable transformation x - Mly is carried out. The reason
for this transformation is that, for a given empirical data set, all interval
endpoints x. M vd with x. < M1 will be transformed into points Yv with
0 < yv < 1, so that the corresponding numbers u. - log yv - log x MI- I will
be negative. (In some cases where there are only a few points x. < MI, it may
be better to transform x into y by means of a factor K, M1 < K < xm. In any
case, from a practical point of view, as will be seen shortly, it is essential
to have "sufficiently" many numbers uV = log yV - log xV - I with uV < 0.)
With log y = u and log F(x) = log F(MIy) - log F(Mleu - v(u), so that log x
b- l - log yMlb

-I - u - log MI-1 , the functional relation

v(u) = (l-p)u - log r(l+(l-p)q-i)-(l-p) log Ml-lb

+ log o ((1-p)8 -1 , 1 +(1-p)8-1 ; - (Mjb-lea) ) (8)

is obtained from (7). The function 0 is represented as a power series in its
last argument with constant term equal to unity. Therefore, as x 4 0, i.e.,
as y + 0, which means as u + - -, log 0 + 0. (For the argument of ( in (8)
the series is alternating and, hence, 0 < D < 1.) Consequently, the function
v(u) given in (8) is asymptotically linear in u as u + - -. In other words,

v(u) - va(u) = (l-p)u-log r(l+(l-p)8- ) - (1-p) log Ml-lb, u 4. - -.

This asymptotic linearity property may also be expressed by saying that, as
u 4 - -, the graph of the function v(u) approaches the (straight line) asymp-
tote determined by the equation

va(u) -(1-p)u - log f(l+(1-p)9 -1 ) - (l-p) log Ml-lb.

6



Here and In (8) the scale parameter b may be eliminated by weans of the first
moment, using (3) for v - 1,

b = Ml r(-P)8-1),
r((2-p)8 - 1)

which leads to

va(u) = (l-p)u-log(l-p)R-1-(2-p)logr((l-p)%-l)

+(l-p)logr((2-p)R-1). (9)

Obviously, the graph of the function v(u) has a second asymptote, namely the
line v = 0 four u + = -. This one, however, is of no further interest.

Based on the asymptotic linearity property of the function v(u), one can
formulate the following applicability criterion which has been announced
already in [7]:

A distribution function F(x) of the class (*) may be considered as a
candidate for a data fit if the logarithmic plot of a given set of empirical

data, i.e., the plot of the points P , - (u ,,vJ) ul, log x -,K1, Mi < K < xm,
v,- log F(x,,) (v = 1, ..., m), indicates the existence of an asymptote as u

It is essential to observe that the initial shape parameter p of a
member of the distribution class (*) is uniquely determined by the direction
angle 9 of the asymptote of the graph of the function v(u). According to (8)
and (9), i-p - tan e. This fact will be exploited in the parameter deter-
mination method.

7



IV. DETERMINATION OF THE PARAMETERS

This section presents the general outline of the proposed parameter
determination method relative to the distribution class (*). The actual com-
putational procedure will be established in Section V.

Determination of the parameters b, p, and 8 relative to a given empirical
data set requires the solution of three simultaneous equations. For nota-
tional convenience p is replaced by 1-a. Since the scale parameter b can be
expressed uniquely in terms of the two shape parameters by means of the first
moment (3), it is actually necessary to have only two equations involving the
two shape parameters. One such equation can be obtained from the second
moment upon elimination of b. It is of the form

h(S,a) - r2 I17 - Ar 2) r OA -- M2 (10)

in which, according to (4), 0 < A < I. A second equation, g(R,a) - 0, follows
from the function v(u) given in (8) if u - 0 and b is eliminated.

Unfortunately, the second equation is unpleasant from a computational
point of view. It is desirable, therefore, from a practical standpoint, to
replace it by some other equation which can more easily be handled.

To achieve this objective, an approximating function v*(u) is used for
the function v(u) with the fact in mind that the asymptote of the graph of
v(u) determines the initial shape parameter uniquely. For v*(u) the function

v*(u) - au + o(eSu-l) + v(O), a - 1-p (11)

is chosen.

There are several reasons for this choice of v*(u):

(1) The graph of v*(u) has the asymptote v*a(u) - au + v(0) as
u + -, Its direction tangent a - 1-p being the same as that of the asymptote
of the graph of the original function v(u) (9),

(2) The function v*(u) approximates the function v(u) well over the
interval (-o, 0] (Appendix B). Of course, regardless of the value P, v*(u)
will not approximate v(u) for large values of u, since v(u) + 0 as u + +
- whereas v*(u) does not. This is no matter of concern, however. The inten-
tion is to exploit the asymptotic linearity property of v(u) as u + -

(3) v*(O) - v(O), and

(4) The function v*(u) is linear in its coefficients a and o-

If v(u) can now be approximated by v*(u) in such a fashion that the
coefficient a, say, becomes a well-defined function of 8, a - a(A), then the
needed second equation, g*(R,a) - a - a(8) - 0 to solve the problem results.

8



The easiest way to explain the procedure is to go along with an example.Table 1 shows absolute frequencies fa (FABS) over m-14 classes (K) with inter-
vals (xv-1 , xv) - [v-l,v) of length d = 1. The total number of observations
is N - 119. The data for this example (Example Library Classification:
EMPEX #3) originated from Reference (13]. EMPEX #3 presents the frequency
distribution of 119 upper-tropospheric wind speeds measured over Nashville,
Tenessee between mid-May and mid-September 1985. The reported (scalar) wind
speed values refer to the 300 hektopascal level which corresponds approxima-
tely to a height of 9.6 km. The original reports [13] of wind speeds in inte-
gral values of knots have been grouped here into classes of 5 knots. There-
fore, the vth class interval [v-I, v) contains the observations from 5v-5 to
5,-l knots (v=1,...,14).

TABLE I. Empirical Example #3 - Absolute Frequencies.

K XR FABS

1: 1.00 2 *****
2: 2.00 6 ****************
3: 3.00 14 *************************************
4: 4.00 17 *********************************************
5: 5.00 21 * * * * * * * * * * * * * * * * * * * * * * * * * * * *

6: 6.00 14 *************************************
7: 7.00 15 ****************************************
8: 8.00 10 ***************************
9: 9.00 7 *******************

10: 10.00 6 ****************
11: 11.00 2 *****
12: 12.00 1 ***
13: 13.00 3 ********
14: 14.00 1 ***

9



The relative frequencies fr (FREL) are given in Table 2 together with the cdf
values F (CUMREL) at the right-hand interval endpoints (XR) calculated
according to (2). This table also shows the coordinates uV M log vMI- 1 , vV -

log F(v) of the log cdf points Pv - (uv, vv) in the U- and V- columns. The
value of MI - 5.4496 has been determined from (5). (It corresponds to 26.248
knots).

TABLE 2. Empirical Example #3 - Relative Frequencies.

K XR FREL CUMREL U V

1 1.00 1.68% 1.68% -1.6955 -4.0860
2 2.00 5.04% 6.72% -1.0024 -2.6997
3 3.00 11.76% 18.49% -0.5969 -1.6881
4 4.00 14.29% 32.77% -0.3092 -1.1156
5 5.00 17.65% 50.42% -0.0861 -0.6848
6 6.00 11.76% 62.18% 0.0962 -0.4751
7 7.00 12.61% 74.79% 0.2504 -0.2905
8 8.00 8.40% 83.19% 0.3839 -0.1840
9 9.00 5.88% 89.08% 0.5017 -0.1157

10 10.00 5.04% 94.12% 0.6070 -0.0606
11 11.00 1.68% 95.80% 0.7024 -0.0429
12 12.00 0.84% 96.64% 0.7894 -0.0342
13 13.00 2.52% 99.16% 0.8694 -0.0084
14 14.00 0.84% 100.00% 0.9435 0.0000

10



The plot of the points Pv (with P9 , P10 , P1 2, P1 3 omitted for reasons
of clarity) is shown in Figure 1. Inspection of the plot leads to the conclu-
sion that the class (*) can be applied for a data fit.

V 
Ix v

a
-iX x

-2

-3

-4 Xp 1

I I _ _ _ _ _ _

-4 -3 -2 -1 0 £ 2U
Figure 1. Plot of points PV.

Digressing briefly, a few remarks concerning cdf plots like the one
shown in Figure I are offered. It is strongly recommended that the plot
be prepared for a given empirical data set and inspected carefully for the
following reasons: (1) It provides the first opportunity to decide whether
or not the distribution class (*) should be applied for a data fit, and
(2) the plot provides the analyst with some basic information about the type
of distribution he is dealing with beyond that which can be extracted from a
histogram. If an asymptote location can be estimated, its direction angle 9
provides immediately an estimate of the initital shape parameter p since
tan I - a - 1-p. Observe that 0 < p < I (J-shaped pdf) if 0 < 0 < n/4,
p - 0 if w / i/4 (half bell-shaped type pdf, purely exponential), and p < 0
(hump-shaped pdf) if w/4 < 0 < w/2.

11



If now, in the general case, the plot of points P. - (uV, v,)(v-l,...,m),
uV = log x.4l-I, v v - log F(x), with enumeration done such that uI < u2 <...
<UK_3 < 0 < uK..2 < ... < Um, of a given empirical data set indicates that the
distribution class (*) is applicable, then there must be numbers p - 1-a and
8 (and b) such that the function v(u) "fits" the points PV. If this is so,
then if v*(u) is a good approximating function of v(u), the same will be true
for v*(u) if the parameters a, p, and B have been properly chosen.

To specify the coefficients a and p of v*(u), perform a least squares
fit on the points PV = (uV, vV) with

ul < u2 < ... < uK-3 < 0 < ur-2 < UK-1 < UK (12)

disregarding all others with index greater than <. In the above example,
- 8. The reasons for this choice of a subset of the points P. are that,

(1) points with uV < 0 over which the quality of the fit may be poor are
eliminated and (2) a sufficient number of points are available to adequately
account for the typical concavity of the graph of the function v(u) (Fig. 1).
Experience shows that a minimum of five points PV with negative abscissas
uV are normally adequate. Should there be less than five such points under
scaling of x by means of Ml, one should use a scaling factor K < M1 .

With 8 in (11) as a parameter, the least squares fit on the points
PV with abscissas (12) leads to a system of two linear equations for a and p
which can easily be solved to give a and p as functions of 8, a - a(R),
p - p(8). Actually, only a - a(8) is needed for the parameter determination
procedure. The function 0(8) is useful, however, to judge the quality of the
approximation of v(u) by v*(u) (Appendix B).

Of course, it is necessary in this process to determine the numerical
value of v(O) which appears in (11). But this number can easily be calculated
by means of Lagrange-Aitken interpolation over the consecutive points PK-4,
PK-3, PK-2, P- 1 with u,-4 < uK-3 < 0 < u,'-2 < u.
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V. THE ITERATION PROCESS

The least squares fit on the log cdf points Pv = (uv,vv) with abscissas
satisfying the inequalities (12) by means of the function v*(u) given in (14)
leads to the error equations

v*(u v ) = ouv + p(eBuV-l) + v(o) = vv + V(v - 1,...,,K). (13)

Minimization of the sum of squares of the errors V specifies the coefficients
a and p as functions of the parameter 8,

a(B) - D1i/D, p(8) - D2/D. (14)

The determinants are defined by

D(B) - ALIA 22 - A2 12 , DI(8) - BA2 2-CA1 2 , D2(0) - CAI1 - BA12  (15)

with

KIc I

Al l  E u2
v , A1 2 (8) E ujav, A2 2 (8) - a2 V,

v-1 v-i v-1

K K (16)

B-uvcC(B) - avcvavh e -, cv -v(O).

v-I v-I

In addition to the equation g*(B,a) = a - a(B) - 0, use the equation
h(8,a) - 0 given in (10). The coefficient A which appears in the function h
is to be determined by means of the formulas (5) and (6). Essential proper-
ties of the equations g* - 0 and h - 0 are discussed in Appendixes A and C.

The iteration process now proceeds as follows. Set 8 - 1 in (13) and
calculate the value al - a() from (14). Then solve the equation h(A,aI ) - 0.
As a matter of fact, use of the equation H(a,a) - 0 obtained from h(8,a) - 0
by the substitution 9 - a(l-a)- reduces the interval of the unknown from
(0, + a*) to (0,1). The regula falsi method is used with the starting value
a - 0.5, and a search for the first pair of functional values of opposite
sign is initiated. Iteration is terminated when 1 j<-10-3. (The full
Newton's method has also been used with no essential improvement in accuracy
but the added computational burden of having to evaluate the psi function.)

The solution 81 of h(B,al) - 0 is then used to calculate the value
G2 - a(81 ) from (14). Proceeding in this fashion, establish two sequences
{fa} and {Bv } which, provided the data set Is well-conditioned, will converge
(Appendix D) to numbers ao 1 1 - po and 8o, respectively. These numbers
po and 80 are the final values for the shape parameters p and 8. The final
value bo for the scale parameter b is then obtained from the first moment,
bo - M1 r((1-po)8o-

1 )/ r((2-p o )Bo- 1), and the parameter determination process
is complete.

13



In practice, of course, the iteration process will be terminated when a
desired accuracy has been reached. For the examples to be discussed in the
next section, the criterion jav-avl < 10-2, j<v < 10-2 was used and
seems to be adequate. Thus, the first pair of values a. and Bv which satisfy
this criterion was taken as the final values.

14



VI. EXAMPLES

This section presents a number of examples for the parameter determina-
tion method. To demonstrate its efficiency, several special cases of the
distribution class (*) were selected for which, in order to be able to eval-
uate the results objectively, the parameter values were chosen to begin with
and then reconstructed. The resulting errors in these examples are entirely
due to errors arising from the approximation of the function v(u) by the func-
tion v*(u). The log F(x) values have been calculated directly from the exact
cdf's which, since all of the examples are of Weibull type (i.e., p = I - v),
are given by

F(x) - I - exp - 8, xb- 1 . (17)

The moments M1 and M2 have been calculated from the formula (3) by means of
the given b, p, and R values. In empirical cases, additional errors will
arise from the use of the sample moments.

There are four examples, classified in our example library as SYNEX
(- synthetic example) #8, #9, #10, and #11. SYNEX #8 represents an exponen-
tial distribution, SYNEX #11 a J-shaped distribution. The others are of hump-
shaped type. SYNEX #10 is being presented in two different versions relative
to the number of classes.

Tables 3, 4, 5, 6, and 7 are essentially self-explanatory. The heading
includes the original parameter values (p - I - 8 in all cases). Column K
indicates the class interval number. In the second column, x. - XR gives the
right-hand class interval endpoint. The interval length d in each case can
immediately be extracted from this column. The cdf values F(xv) - CUMREL are
shown in column 4 as calculated from (17) for the given b, p, and 6 values up
to values of xv in such a way that the first three points Pv , (u, vV)
(v = Pc-2 , c-1, K) in the fourth quadrant of the (u, v)-plane are included in
the set of points to be used for the least squares fit. Column 3 (which is
actually of no interest relative to the SYNEX's) shows the relative frequen-
cies fr(Xv) - FREL calculated from the cdf values. The coordinates uv - U,
vV = V of the points P. are given in columns 5 and 6, respectively. The last
column DV/DU - tan om_ .l contains the coordinate difference ratios. It is of
some interest in these SYNEX's only.

The moments M1 - Ml, M2 - M2, and the numbers A - M1
2/M2 and v(O) - VO

are given in the center block of each table. In each case, the numerical
value of v(o) has been calculated by means of four-point-Lagrange-Aitken
interpolation as explained at the end of Section IV.

The last block in each table contains the numerical results for each
iteration step. The final values for the parameters appear in the lower
right-hand corner. Iteration in each example has been started with R - 1
and terminated at lgv-Bvl 1< 10-2.

It should be observed that the fact that the examples are of Weibull type
has nowhere been used in the iteration process, i.e., p and 8 (and b) have
been individually determined.
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TABLE 3. SYNEX #8: Exponential Weibull Distribution (B=1, P-0, BETA=1)

K XR FREL CUMREL U V DV/DU

1 0.10 9.52% 9.52% -2.303 -2.352 1.022
2 0.20 8.61% 18.13% -1.609 -1.708 0.930
3 0.30 7.79% 25.92% -1.204 -1.350 0.882
4 0.40 7.05% 32.97% -0.916 -1.110 0.836
5 0.50 6.38% 39.35% -0.693 -0.933 0.793
6 0.60 5.77% 45.12% -0.511 -0.796 0.751
7 0.70 5.22% 50.34% -0.357 -0.686 0.711
8 0.80 4.73% 55.07% -0.223 -0.597 0.672
9 0.90 4.28% 59.34% -0.105 -0.522 0.635

10 1.00 3.87% 63.21% 0.000 -0.459 0.599
11 1.10 3.50% 66.71% 0.095 -0.405 0.566
12 1.20 3.17% 69.88% 0.182 -0.358 0.533
13 1.30 2.87% 72.75% 0.262 -0.318 0.502

M1 1.0000 M2 m 2.0000 A = 0.5000

VO = -0.4587

Iteration #1: RHO - -0.4093 PO 0.0191
SIGMA - 0.9809 BETAO- 1.0201
ALPHAO- 0.5050 BO - 1.0479

Iteration #2: RHO - -0.3988 PO - 0.0226
SIGMA - 0.9774 BETAO- 1.0239
ALPHAO- 0.5059 50 - 1.0571
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TABLE 4. SYNEX #9. Weibull Distribution (B-1, P=-l, BETA=2)

K XR FREL CUMREL U V DV/DU

1 0.10 1.00% 1.00% -2.182 -4.610 2.113
2 0.20 2.93% 3.92% -1.489 -3.239 1.978
3 0.30 4.69% 8.61% -1.083 -2.453 1.939
4 0.40 6.18% 14.79% -0.796 -1.912 1.881
5 0.50 7.33% 22.12% -0.572 -1.509 1.805
6 0.60 8.11% 30.23% -0.390 -1.196 1.714
7 0.70 8.50% 38.74% -0.236 -0.948 1.608
8 0.80 8.53% 47.27% -0.102 -0.749 1.491
9 0.90 8.24% 55.51% 0.015 -0.589 1.365

10 1.00 7.70% 63.21% 0.121 -0.459 1.233
11 1.10 6.97% 70.18% 0.216 -0.354 1.097

Ml = 0.8862 M2 = 1.0000 A = 0.7854

VO = -0.6087

Iteration #1: RHO - -0.7523 PO -1.1471
SIGMA - 2.1471 BETAO- 1.8121
ALPHAO- 0.6444 BO - 0.8922

Iteration #2: RHO - -0.3812 P0 - -1.0052.
SIGMA - 2.0052 BETAO- 1.9921
ALPHAO- 0.6658 BO = 0.9959

Iteration #3: RHO = -0.3454 P0 - -0.9882
SIGMA - 1.9882 BETAG- 2.0168
ALPHAO- 0.6685 BO f 1.0089

Iteration #4: RHO = -0.3410 PO - -0.9860
SIGMA - 1.9860 BETAO- 2.0199
ALPHAO= 0.6689 BO - 1.0105
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TABLE 5. SYNEX #10: Weibull Distribution (B2, P-2, BETA=3)

K XR FREL CUMREL U V DV/DU

1 0.10 0.01% 0.01% -2.883 -8.987 3.118
2 0.20 0.09% 0.10% -2.189 -6.908 2.999
3 0.30 0.24% 0.34% -1.784 -5.693 2.997
4 0.40 0.46% 0.80% -1.496 -4.832 2.992
5 0.50 0.75% 1.55% -1.273 -4.167 2.983
6 0.60 1.11% 2.66% -1.091 -3.625 2.969
7 0.70 1.53% 4.20% -0.937 -3.171 2.949
8 0.80 2.00% 6.20% -0.803 -2.781 2.922
9 0.90 2.51% 8.71% -0.685 -2.441 2.886
10 1.00 3.04% 11.75% -0.580 -2.141 2.842
11 1.10 3.58% 15.33% -0.485 -1.876 2.788
12 1.20 4.10% 19.43% -0.398 -1.639 2.724
13 1.30 4.59% 24.01% -0.318 -1.427 2.649
14 1.40 5.02% 29.04% -0.243 -1.237 2.562
15 1.50 5.38% 34.42% -0.174 -1.067 2.465
16 1.60 5.65% 40.07% -0.110 -0.915 2.356
17 1.70 5.82% 45.89% -0.049 -0.779 2.236
18 1.80 5.87% 51.76% 0.008 -0.659 2.107
19 1.90 5.81% 57.57% 0.062 -0.552 1.968
20 2.00 5.64% 63.21% 0.113 -0.459 1.822

M1 = 1.7860 M2 - 3.6110 A - 0.8833

VO = -0.6746

Iteration #1: RHO - -0.7792 P0 - -2.1569
SIGMA - 3.1569 BETAO- 2.7861
ALPHAO- 0.7359 BO - 1.8925

Iteration #2: RHO - -0.3418 PO - -2.0029
SIGMA - 3.0029 BETAO- 2.9976
ALPHAO- 0.7498 BO - 1.9985

Iteration #3: RHO - -0.3276 PO - -1.9963
SIGMA - 2.9963 BETAO- 3.0075
ALPHAO- 0.7505 BO - 2.0031
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TABLE 6. SYNEX #10: Weibull Distribution (B=2, P=12, BETA=3)

K XR FREL CUMREL U V DV/DU

1 0.30 0.34% 0.34% -1.784 -5.693 3.191
2 0.60 2.33% 2.66% -1.091 -3.625 2.983
3 0.90 6.05% 8.71% -0.685 -2.441 2.922
4 1.20 10.72% 19.43% -0.398 -1.639 2.789
5 1.50 14.99% 34.42% -0.174 -1.067 2.563
6 1.80 17.34% 51.76% 0.008 -0.659 2.238
7 2.10 16.82% 68.58% 0.162 -0.377 1.825
8 2.40 13.66% 82.24% 0.296 -0.196 1.360

M1 I 1.7860 M2 - 3.6110 A = 0.8833

VO = -0.6746

Iteration #1: RHO - -1.3093 PO = -2.4482
SIGMA = 3.4482 BETAO- 2.4435
ALPHAO- 0.7096 BO - 1.6902

Iteration #2: RHO - -0.3908 PO - -2.0325

SIGMA - 3.0325 BETAO- 2.9538
ALPHAO- 0.7471 BO - 1.9778

Iteration #3: RHO - -0.2972 PO - -1.9730
SIGMA - 2.9730 BETAO- 3.0435
ALPHAO- 0.7527 BO - 2.0195

Iteration #4: RHO - -0.2840 P0 - -1.9643
SIGMA - 2.9643 BETAO- 3.0574
ALPHAO- 0.7535 BO - 2.0257

Iteration #5: RHO - -0.2821 PO - -1.9630
SIGMA = 2.9630 BETAO- 3.0595
ALPHAO- 0.7537 50 - 2.0266
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TABLE 7. SYNEX #11: Weibull Distribution (B=5, P=0.5, BETA=0.5)

K XR FREL CUMREL U V DV/DU

1 1.00 36.06% 36.06% -2.303 -1.020 0.443
2 2.00 10.81% 46.87% -1.609 -0.758 0.378
3 3.00 7.04% 53.91% -1.204 -0.618 0.345
4 4.00 5.20% 59.12% -0.916 -0.526 0.320
5 5.00 4.10% 63.21% -0.693 -0.459 0.300
6 6.00 3.35% 66.56% -0.511 -0.407 0.283
7 7.00 2.81% 69.37% -0.357 -0.366 0.268
8 8.00 2.40% 71.77% -0.223 -0.332 0.255
9 9.00 2.08% 73.86% -0.105 -0.303 0.243

10 10.00 1.83% 75.69% 0.000 -0.279 0.232
11 11.00 1.62% 77.31% 0.095 -0.257 0.222
12 12.00 1.45% 78.76% 0.182 -0.239 0.213
13 13.00 1.30% 80.06% 0.262 -0.222 0.205

Ml = 10.0000 M2 - 600.0000 A = 0.1667

VO = -0.2785

Iteration #1: RHO - -0.1775 P0 0.6110
SIGMA = 0.3890 BETAO- 0.5897
ALPHAO- 0.3709 BO - 11.3206

Iteration #2: RHO - -0.3785 P0 - 0.5568
SIGMA - 0.4432 BETAO- 0.5409
ALPHAO- 0.3510 BO - 7.5874

Iteration #3: RHO - -0.4325 PO - 0.5449
SIGMA - 0.4551 BETA0- 0.5315
ALPHAO- 0.3470 BO - 6.9509

20



TABLE 8. Empirical Exarmple #3

K XR FREL CUMREL U- V

1 1.00 1.68% 1.68% -1.6955 -4.0860
2 2.00 5.04% 6.72% -1.0024 -2.6997
3 3.00 11.76% 18.49% -0.5969 -1.6881
4 4.00 14.29% 32.77% -0.3092 -1.1156
5 5.00 17.65% 50.42% -0.0861 -0.6848
6 6.00 11.76% 62.18% 0.0962 -0.4751
7 7.00 12.61% 74.79% 0.2504 -0.2905
8 8.0 8.40% 83.19% 0.3839 -0.1840
9 9.00 5.88% 89.08% 0.5017 -0.1157
10 10.00 5.04% 94.12% 0.6070 -0.0606
11 11.00 1.68% 95.80% 0.7024 -0.0429
12 12.00 0.84% 96.64% 0.7894 -0.0342
13 13.00 2.52% 99.16% 0.8694 -0.0084
14 14.00 0.84% 100.00% 0.9435 0.0000

M1 = 5.4496 M2 = 37.1064 A 0.8003

V0 = -0.5792

Iteration #1: RHO - -1.1896 PO -1.6938
SIGMA = 2.6938 BETAO 1.5309
ALPHAO= 0.6049 BO 2 4.0079

Iteration #2: RHO = -0.6288 Po 2 -1.4580
SIGMA = 2.4580 BETAO= 1.7002
ALPHAO= 0.6297 BO 4.7563

Iteration #3: RHO = -0.5378 P0 -1.4118
SIGMA = 2.4118 BETAO= 1.7417
ALPHAO= 0.6353 BO 2 4.9226

Iteration #4: RHO - -0.5187 Po -1.4017
SIGMA = 2.4017 BETAO- 1.7512
ALPHAO- 0.6365 BO - 4.9597
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The accompanying Figures 2, 3, 4, 5, and 6 show the log cdf point plots.
In Figure 4 the points P1 and P2 are not shown.

The calculations have been performed on an IBM-PC compatible microcom-
puter (without math co-processor) in compiled MS Basic. For empirical samples
of frequency distributions with approximately 40 classes, actual computing
time was less than 60 sec.

The evaluation of the differences between the obtained parameter values

po, go, bo, and the original ones, p, B, b, shows that max I1po-P I. I o-I
Ibo-b 11 is < 6.10-2 in SYNEX #8, < 2"10-2 in SYNEX #9, < 8"I0 - 3 in SYNEX
#10a, < 6.10-2 in SYNEX #10b. In SYNEX #11, max I po-p 1, Igo- It < 5.10-2,
but 1.950 < bo - b < 1.951. The large error in the scale parameter demon-
strates the well-known sensitivity of this parameter to small changes in the
others for J-shaped distributions. The culprit in this matter, of course, is
the error in the Initial shape parameter p. Ultimately, this error results
from the fact that the class interval length in the example used is too big
for this type of distribution.

Before closing this section, briefly return to the empirical example,
EMPEX #3 considered in Section IV. The first and second moments are (from
(5) and (6), respectively) Ml = Ml = 5.4496 and M2 - M2 - 37.1064 as shown in
the center block of Table 8, which also shows the numerical values of
A - M1

2/M2 and v(O) - VO. Starting with 8 - 1, after the 4th iteration step,
the final parameter values bo, Po, and 80 shown in the lower right-hand corner
of Table 8 are obtained. The least squares approximations include the points
F9 for v - 1,...,8. No goodness-of-fit test will be performed on the final
parameter values in this paper. This will be left to a separate publication
which will deal exclusively with empirical examples. However, it is worth
mentioning that a recently performed maximum-likelihood estimation of the
parameters of EMPEX #3 resulted in the final values p - - 1.466, B 1.720,
and 6 = 4.795.
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The Equation h(P,a) - 0

Return to the equation h(S,a) 0 0, 0 < A < 1, given in (10). The first

partial derivatives of h(R,a) are

ham2h [1 2(+) (i±)'(i)-A (±r () A'#

W (y) - d log r(y)/dy [12;8.360J being the psi function. If h(R*,cT*) -0
for R* > 0, a* > 0, then

~h [- (1+a ) r1+a (a)(

Use of the series expansion for t(y) [12;8.362,1]

,(y) s- y 1
V.o y+v 1+v

y = - '(1) being Euler's constant [12;8,367.1] results in

0

> 0, * > O, *> 0.
(a* + vR*)(l+a* + v.*)(2+a* + v8*)

Consequently,

(~\ _r2(.±2a r>0;a \ - -) a.
(Lh C6* >

A-1



In other words, considered as a function of a > 0 for fixed S > 0, h(Aa) has
a positive derivative at each of its zeros a. Since h(P,a) is continuous as a
function of a, it follows that, for fixed R > 0, h(S,a) - 0 can have at most
one root a > 0 and that h(R,a) increases from negative to positive values
across the root.

Again, if R* and a* are positive numbers such that h(8*,a*) = 0, then

T --/ (~ [2-- ,
r2 +a 21+ar*)I IV-a~~

S*2

(2+a*\
- (2+a,) --.

The following formula can be established,

/a*' I 2+a*\
2(l+a*) W - *" (L - (2+a*) - - A* '.a sV,

Vs- - 28* <0O, R* >0O, a* >0O,(a* + vS*) (1+a* + vR*)(2+a* + v8*)

so that

= 2r2 > 0
\-8/ sV >•

V-O

Therefore, considered as a function of R > 0 for fixed a > 0, h(8,a) has a
positive derivative at each of its zeros. Continuity again implies that, for
fixed a > 0, h(R,a) - 0 has at most one root, A > 0, and h(R,a) increases
from negative to positive values across the root.

To continue the investigation of the properties of the equation
h(R,a) - 0 consider the ratio

C(8,a) -(A-1)

-~~ (2%+ar (a) r

which is a continuous function of A and a in the open domain 8 > 0, a > 0.
Set (1+a)R-l - a, A-1 - y. Then (A-9) can be expressed as an infinite pro-
duct (12;8.325.1],

A-2



C( R,) rot) r(c-) ifi( ct)~k c~))

V=o V- 0

0 < t < (i++VB)2-1 1
(i+a+VB)2  (i+ao+V) 2

The infinite product converges (absolutely) for every R > 0 and a > 0 since
the series

S(i+a+vRY-2 < 1+,q2 v-2 < 1 + j2

The inequality 0 < tv < 1 implies that 0 < C(S,a) < 1. Furthermore, because
of convergence of the product, the series

log tv - log (I+a+vp)2

converges. Its uth partial sum is denoted by
U )i

llog i++B)2 )
To investigate the behavio, of the function C defined In (A-i), first

consider a > 0 fixed. Let 9 m- 1 , m being a positive integer. Then

- < log (I - <I2) < log i )< 0 (v m )

(l+C+VMl)- - (1+ 1)2

and, hence, for u > m,

qu < m log + lo --- log (2+1)2 +lg (I+v+vm-1)2)

< log (1 1 ) < 0.

A-2+( 3

A-3



Therefore,

0<Ifeu =i U /1 / / 1 \
0 < lia e lir II t -, < exp log -

uV+ 1 t+ 0 /-o (2+a) 2

(2+a)2)

The right-hand side can be-made arbitrarily small if m is sufficiently large.
In other words, for every fixed a > 0, the Infinite product C(R,a) will be
arbitrarily small if 8 > 0 is sufficiently small, I.e., for every fixed a > 0,
it diverges to zero as R + 0.

To investigate the behavior of C(B,a) for a > 0 fixed and 8 large, use
the partial products of (A-10),

P

U

1i
The denominator IT (l+a+vR)2 is a polynomial In P also of degree 2u with lead-

VMO

Ing coefficient (l+a)2 u!. Therefore, for every fixed a > 0 and for every u,

U

ppt as + W+.(l+a)2

VMO

This means that, for every fixed a > 0, the infinite product converges to
1 - (I+a)- 2 , 0 < 1 - (+a) - 2 < 1, as R + + -.

From these results two preliminary conclusions are drawn:

(1) Since the function C(8,a) > 0 in (A-i) can be made arbitrarily
small for every fixed a > 0 if P > 0 is sufficiently small, the function
h(Aa) with 0 < A < I will be negative for every fixed a > 0 if R > 0 is suf-
ficiently small and

(2) If 1 - (l+a) - 2 < A, i.e., if

1

0< a < a- 1 1, (A-3)

h(A,a) < 0 for every R > 0. On the other hand, h(8,a) > 0 for every a > aA
if 8 is sufficiently large.
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Consequently, since h is a continuous function of R, observe that, for
every fixed a > 0A, h(A,a) - 0 has at least one positive root. Earlier it
was observed that, for every fixed a > 0, h(R,a) - 0 has at most one root.
It follows that, for every fixed a > aA, h(P,a) 0 has exactly one positive
root 8.

With the established existence of at least one point P* - (R*, a*), R* >
0, a* > aA, such that h(A*,a*) = 0, discussion of the equation h(R ,a) - 0
can be completed by means of the implicit function theorem. Its conditions
are satisfied in some neighborhood of P*: h(P*, *) = 0, (ha)p* > 0, (hq)p* >
0, h(R,a), ha(8,a), hR(R,a) being continuously differentiable in the domain 0

< 8 < + -, qA < a < + =. Consequently, there exists a closed interval [RI,R 2 ]
such that 0 < 81 < 8* < F2 and a one-valued continuous function a = 3(P) such
that h(R,a(P)) = 0 for every RE [BI,R2]. The implicitly defined function
3(g) is even continuously differentiable in (RI,A 2). Its derivative is given
by

d (R) P ( 8)) < , E ( I, 2),dR ha(Pd( 8))

i.e., '(A) is a monotonically decreasing function of R for 91 < R< A2.

The domain of existence of the implicit function 3(8) can now be extended
to all of 0 < 8 < + - by the following arguments.

Suppose U(B) could not be continued to the right of some point B > 0.
Then there would exist a point F on the line - 6 B with coordinates S and a,
aA < 3 < + -, such that every neighborhood of P would contain infinitely many
points P of the graph of the function 3(B) with abscissas 8 < 8. At each of
these points h(B,a) - 0. Then T would be a limit point of such points P.
Because of continuity of h(8,a) this would implyh(8,a) - 0. But then the
function 6(8) could be extended to the right of 8 by the original arguments.
Analogous considerations apply for continuation to the left.

Since h(B,a) - 0 has exactly one root 8 > 0 for every a > aA, the range
of a(S) is the interval (aA,+ -) and, as a consequence of monotonicity,

(8) + + - as 8 0 0, 3(8) + aA as 8 + + -.
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Approximation of v(u) by v*(u)

Return to the function v(u) defined in (8), replacing bM1-1 by
r((l-p)8-1/r((2-p)8 -1 leaving, however, Mlb-1 in the argument of the $-function
unchanged for notational convenience. Then

v(u) - (l-p)u - log - (2-p) log r + (l-p) log r

+ log , 1 +-L-; - (! •u (B-1)

To approximate v(u) the function v*(u) given in(1i) was used with

v(O) - - log - - (2-p) log r + (l-p) log r

+ log , 1 +-; -

numerically to be determined by four-point Lagrange-Aitken interpolation from
given points of the log cdf plot.

Subtraction of v*(u) from (B-1) results in

v(u) - v*(u) - p + log 0(0) - pe8u, (B-2)

where, for notational convenience, O(u) stands for the function € as it
appears In (B-I), 0(0) for its value at u - 0. Since fv(u) - v*(u)Imust be
small over a suitable u-interval and since Iv(u) - v*(u)Imust go to 0 as
u+ - w, from (B-2) it can be seen that the two constants must satsi.y the
equation

P - log 0(0). (B-3)

Now set (l-p)8 - = a, (Mlb-l) 8 - c, and expand D(u) into its power series
[12;9.210.I],

s(u) - D(a, 1+a; - ceSu)

-1 - 2 ceRu + a _ c2 e 2 Bu - a _L c 3 e3Ru + -

i+a 1! 2+a 2! 3+a 3!
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If each of the exponential functions is expanded into its power series, the
series for € can be rearranged as follows:

a 1a 1 a 1
O(u) , 1 c + - - c2 - - - c3 +

l+a 1! 2+a 2! 3+a 3!

L c L (Ru) + - (u)2 + ! +
L+a 12! 3!

+2a 1 c2 [L (28u) + - (28u)2 + -L (28u)3 + ""

2+a~ 3! 1L 2! 3!u)

a 13! [L (39u) +- (38u)2 + -L (3gu)3 + .""+-

The series in the first row is equal to ((O). The series in brackets In the
vth following row is equal to ev u-l. Therefore,

$(u) (0) - 3Z (-1)v-1 a 1 cv (e Bu-l).S+Ea v!
v-1

Denote the infinite series by A(u). Then

f(u) - (0(0)(1-A(u)0-l(0)j (B-4)

and consequently,

log O(u) - log D(O) + log(l - A(u)0-1 (o)]

Return with this expression to (B-2) and obtain

jv(u) - v*(u) I p + log[l -A(u)Di(O)] - 8uI (B5)

The identity (B-4) shows that I - A(O)0-1 (o) 1 . Furthermore, 0 < 0(0) <

O(u) < 1 for uE (- =,0), and $(u) + I as u 4 - . Therefore, 1 - A(u)o-l(0) +

D-1(0) as u + - -. Consequently,

I < 1 - A(u)$- 1 (0) < 0-I(0), uE (-®,0],

which implies

0 < log[1 - A(u)-l(0)] < - log V(0), uE (-a, 01.
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From (B-5) the following estimate now results:

Iv(u) - v*(u) 1< p - log b(O) - pe ou , u <0.

If (B-3) holds, this reduces to

Iv(u) - v*(u) I< IP I eRu, u 0,

and v(O) - v*(O) - 0. Since Jv(u) - v*(u) J+ 0 as u + - , the maximum error
in the approximation occurs at some uo < 0. Therefore

Iv(u) - v*(u) l< p Je'uo uniformly in u < 0.

The error over the interval (O,u] is Immaterial since the objective is
to approximate v(u) as u + -
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The Coefficient a as a Function of 9

Next the properties of the function o(P) defined in.(14) together with

(15) and (16) are investigated.

First of all, establish the fact that a(R) > OF or PE (0,+ a). For two
points Pv - (u,,v.)(v1l,2) with uI < u2 and the point Vo - (0,v(O)'

2a)( 2 2) a 2 u .a2)
D - l + u2 I +a2 -(ua+(ula2 -u2a2)

and, by induction,

D = All A2 2  - A1 2  ( M uav ua V 2

l< j<v<k

for any number c of points P. - (u., v.) with the abscissas ordered as above.
Now look at the terms

upav - uai = uu(eRuv - l) - Uv(e UU-l), l<u<v<k, A > 0. (C-1)

Set 0up - x, Ru. - y, x < y, x A 0, y A 0. Then (C-I) changes into x(eY-1) -
y(eX-l) and y = ax leads to the function

f(x) = xg(x), g(x) - eax - 1 - a(eX-1), g(O) - 0, (C-2)

g'(x) - aex (e-(la-)X-l)

Distinguish the three possible cases.

1. 0 < x < y - ax, 1 < a < + -, so that g'(x) > 0, x > 0. Since g(O) - 0,
g(x) > 0, x > 0 and, hence f(x) > 0, x > 0. Therefore uja v - uvau > 0,
0 < uu < uV.

2. x < 0 < y - ax, - - < a < 0, g'(x) < 0. This. and g(O) - 0 imply g(x)
> 0, f(x) < 0, x < 0, and hence, uua. - uuau < 0, ui < 0 < uV.

3. x < y - ax < 0, 0 < a < 1, g'(x) > 0. g(O) - 0 leads to g(x) < 0,
f(x) > 0, uua V - ua u > 0, 0 < uu < uV < O.

Therefore, for (C-I)

uuaV - ua. < O, uu V > 0, (C-3)
<0, u11uv < 0.
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Consequently, D(B) > 0, 8 (0, + -).

Next, look at DI(8).- For two points,

Dl - (ulci + u2c2)(a 21 + a22) - (alcI + a2c2)(ulal + u2a2)

- (ula2 - u2al)(cla2 - c2al)

and, by induction,

D1 - BA2 2-CA1 2- (uuav.-uvau)(cav - cjau)•

1< u<v~k

Investigate the terms

ca. - cvau - [v, - v(O)I(eRUv-l) - [vv-v(O)](e'Uu-l),

l<u<vk, 00.

Division of (C-3) by u~uv 0 0 results in

a. a.1- - > 0 in any case. (C-4)
u V  u11

Let r. M cuuu-1 ,rVM cVUV- , and assume 0 < r. < r.. Since r. may be

interpreted as tan 9, 6. being the angle between the horizontal positively

oriented line through P. and the line through P. and Vo - (O,v(O)), the last

assumption implies concavity of the location of the three points Pu, PV, and
Vo . Then, since acuK- 1 > 0, (C-4) implies

a. rV a.1S> 0 in any case.
u V  r. u U

Multiplication by uuuvru yields

uUr j AV - uvrva u - cta v - cvau > 0, uuuv > 0 (C-5)
1< O, uUu V < 0.

On the basis of this inequality and (C-3), DI(A) > 0, R (0, + -,), provided
the points PV are concavely located. Consequently, under this concavity
condition, the coefficient a(8) of the approximating function v*(u) is a posi-
tive function of 8 > 0.

The following remark is essential at this stage. In practical situations,
all of the coordinates of the points Pv (v-l,...,k) of a given empirical data
set may not satisfy the inequality (C-5). Indeed, this is frequently the case.
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However, violation of (C-5) will occur only for points PV with v equal or
close to 1, since the smoothing effect of the cumulative frequencies elim-
inates this occurrence for large values of v. In other words, if the points
PV are sufficiently smoothly located, D1 and, consequently, a, will still be
positive. If, however, in a practical situation, DI should turn out to be
always negative or zero, then this is a clear indication that the class (*)
of distributions cannot be used for a data fit.

Turn now to the derivative of a(8) with respect to the parameter R. It
is given by

a' - D- 2 {D[BA' 2 2 - C'A1 2-CA'1 2] -Dl[AlA'22 - 2A12A'12]1 , (C-6)

k k k

A1 2  = u , A2 2  2 uvabv, C uvvc,bie'u v ...b

Starting from k = 2 one can show by induction that

BA2 2 - C'A1 2 - CA1 2 - [(uaV-uvau)(uvbvcu-uUbucV)

1< IX v k

+ u 1U v(c Va V-c va 11) (bv-b U)]

= ((cuUv-cvuu)(uuaVbp-uvaubV)

1<u<\<k)

+ 2 uuuv (cuav-cvau) (bV-bu)1 (C-7)

after addition and subtraction of uuuv (cuav-cvaU)(bv-bu), and

I I
All A2 2 - 2A1 2A1 2 - 2 F uuuv (uua-uvau) (bv-bu). (C-8)

1< u< Kk

The derivative of a(8) can now be written as

a' . D-2 1[Fueav-uvau)Z(cu-cvuu)(uuavbu-uvaujbv]

[F 2 U [ \(ija u a )] [uuv (cuav -cVau)(bV-bi)]

- 2 [Ecu~aV-uvapu CUav-cvauj)] [F1u U V(ula V-u v u) (bv-b )] 1(C9)

summations to be performed over 1 < u < v < k. For simplicity, set

Ru- M uUa V - ujau, SUV , cua v - cvau.

Then, using different subscript pairs for clearer distinction between the
individual factors, write the second and third lines in this expression for

a' as follows:
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2 [FR2 11v] u cu X S KX(b X -b

-2 IF IRuV] [uuXRX (bX - ,

Those pairs of terms cancel for which the subscript pairs (u,v) and (,,X) are
equal. The remaining terms are pairwise of the form

2R2 uvuKuXS X (bX-b) - 2 Rj1VSUVuuXRKX (bXI-bc), (C-10)

(u,v) A (1CX).

The error equations (13) of the least squares approximation can be
written as

auv + pav - c v - ev (v-1, .. , k).

Division by av (A 0 since uV  0) results in

av a v  av

and consequently,

( U ' C IJ C) E I . CV)a ~-i~)i(a. +v (a.~a

Multiplication by aay leads to

aRuv - + Euv (0 < U < v < k)

with Eua. - evau = Eu. Then (C-10) changes into

2R2UujcUXU (aRjcX-Ejc)(bX-bjc)-2RUV (aRjv-Eijv) UKuXRcX (bX-b<c)

= 2RUuuu(bX-bz)[EUvRK- EKXRuvj (C-11)

If, for some 8 > 0, the points Pv - (uv,vv) should all be located on the graph
of the function v*(u), then ev would be zero for v-l,...,k. This would mean
E1V . 0 for I < u < v < k, so that the terms in (C-11) would be zero. Hence,
the derivative of a(A) would reduce from its general form (C-9) to

at = D-1 E (Cjuv-cvuj)(uuavbU - uvaubv).

1<,v<< k
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In general, however, the approximation errors ev will not be zero. Then

a' - D-1  E (Cuuv-cvuu)(uuavbp - uvaubv) + D-2E (C-12)
l<p<v<k

where E represents the sum of all terms (after cancellation) which are due to
the ev's not being zero.

Now establish inequalities for the factors in the sum In (C-12). First
for cuu - cvuu: if, as before, ru = cuul- 1, rV = cvuv

-', then r. - rV > 0
if the points P, , PV, Vo satisfy the concavity condition. Multiplication of

the last Inequality by uu leads to

> 0, uuuv > 0,
cjuV - cvuu < 0, uju < 0. (C-13)

Next look at

uUa b1 - u aUb = u, (eSU'-l) eRu-uv(e u1 )e uv.

Set 8up - x, Buv - y, x < y, x A O, y 0 0. Furthermore, set y - ax, and
obtain the function

f(x) - -xe-(l+t)x g(x), g(x) e- ax - 1 - a(e-x-l).

With x replaced by -x, the function g(x) appearing here is the same as that In
(C-2). Therefore,

u~avbu - {< , uu v > 0,

> O, uuu v < 0.

This inequality and (C-13) show that the sum in the expression (C-12) for a'
Is certainly negative if the points Pv , (uV,vV) are concavely located rela-
tive to each other with respect to the point Vo - (O,v(O)) (or at least those
for sufficiently large v). Consequently, if the error term D- 2 IE I is suf-
ficiently small, I.e., if the approximation of the points PV by the graph of
the function v*(u) is sufficiently good, the derivative a' of a(P) as given
in (C-6) will still be negative.

An essential practical side result can be formulated on the basis of the
last considerations. The class of distributions (* ) may be used for an ana-
lytical fit of a given empirical statistical data set if the function a(s) is
monotonically decreasing.

At the end of Appendix D this version of the applicability criterion
shall be reformulated to obtain a practically more useful form.
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This appendix shall be finished by an investigation of the limiting
behavior of a(R) as R + and 9 + 0. The function a(R) is defined by the
expression

BA2 2 - CA1 2 o " (C-i14)
A 11A 2 2 - A

2  (-4

12

the various terms being given in (16). As 8 + + -, (since uI < u2 < ...
< Uk-3 < 0 < Uk-2 < Uk-1 < Uk),

BA22 - CA12 - (B - ukck)a2 + (terms of lower order),

ALIA22 - A2 1 2 - (All - u2 )a2 + (terms of lower order).

Therefore, provided a' is negative,

k-l
1: uVa,

B - ukck v1a $ a A1 l -U2 k - > 0, + + .

All-u k-1 2

v-1

As A + 0 the following is argued. Since the numerator and the denomina-
tor in the expression (C-14) for a both go to zero as B + 0, the Bernoulli-de
L'Hospital rule applies. It is used three times. If, in the first step,
the expressions (C-7) and (C-8) are used, the following expressions are
derived In the third step for the numerator and denominator, respectively,

= [uuuv(uvbv-uubu)(uvbvcu-uubucv) + (terms which go to 0)]

2 E [ 3ujuv (ubv-upbp ) (bv-bu) + uuuv(uuaV-uvau) (u 2 vbv-u 2 ub)].

Clearly, each term In the second sum approaches zero as 8 + 0. Since bV + 0
as 8 + 0, the first term in the first sum approaches the positive value
uuuv(cuuv - cvuu.)(u v - uu). Consequently, a + + - as 9 + 0.
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Convergence of the Iteration Process

Two functional relations have been established:

a -( A), a =( 8), 0 < 8 < + W. (D-1)

The first one is implicitly defined by the second moment equation h(q,a) = 0;
the second one has been derived from a least squares fit of given log cdf
points. The properties of U(8) and a(8) have been discussed in Appendixes A
and C, respectively. The parameter determination problem has exactly one
solution go, ao - i - po, bo, if and only if there exists exactly one value
Ro > 0 such that a(%) - Fr(Ro), i.e., geometrically speaking, if, and only if,
the graphs of the two functions in (D-l) have exactly one point of intersection.

Suppose now that there is exactly one Bo > 0 such that a(80 ) - a(Bo).
Since U(8) is not explicitly available, use instead of (D-l) the equivalent
equations

h(Ba) 0 0, a - a(8), (D-2)

and solve them iteratively.

From the least squares fit by means of v*(u) with the starting value
8 - 1, exactly one number Is obtained, al - a(l) - DI(l)/D(l). Then solve the
equation h(8,al) - 0, its unique solution being 81 and face the trichotomy
81 - , 81 > I, 81 < I.

(a) If BI - 1, the iteration process through (D-2) produces the sequen-
ces fa.1 and f8,j with av - al, 8v - 1 (v-1,2,...). Consequently, the solu-
tion of the system (D-2) is 80 - 1, a0 - 1 - Po M al.

(b) If 81 > 1, sequences TavT and Jfl are obtained for which not all
elements are equal. If the function a(R) is monotomically decreasing
(Appendix C), i.e., if the given data are not "ill-conditioned," in the second
iteration step a number a2 = a(RI) < al = a(l), is obtained. Since h(8l,01) =

0, h(8l,a 2 ) < 0 (Appendix C). Therefore, the root R2 of h(8,a2 ) = 0 satisfies
the inequality R2 > Rl These arguments apply in each of the subsequent
iteration steps. Since it was assumed that there exists only one value Ro for
which a( %) - Z( %), the sequence f%1 converges to 80, 8 + 80 > 1 as v + + -,
and the sequence favl converges, aV 4 co -a I - Po as v + + -.

(c) If 81 < 1 analogous arguments apply to establish convergence of the
sequences f8,1 and fav1 to unique limits Ro < 1, ao - I - Po, respectively.

In practice, of course, the iteration process is stopped whenever a
desired accuracy has been reached, and the last 8-value is taken as Ro.

Convergence of the iteration process represents the ultimate practical
test for the applicability of the class of distributions (*). If the itera-
tion process does not converge, this is, in fact, an indication that the
given empirical data set is ill-conditioned and that the class (*) should
not be applied.
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